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Abstract—Path planning and obstacle avoidance problems are
now the focus of robotics research. This paper uses the Dyna-
Q reinforcement learning algorithm to implement an obstacle
avoidance and a path planning algorithm for unmanned ground
vehicle(UGV) under urban environment. Using the reinforcement
learning algorithm, we calculate the waypoints of the unmanned
vehicle and achieve obstacle avoidance tasks and path planning
using a vector field. Finally, we use a PID controller on unmanned
aerial vehicle (UAV) to realize the air-ground collaboration task.
The algorithms and the agents’ modeling in this paper are
implemented in the lab’s simulation platform.

Index Terms—Dyna-Q, path planning, UGV, simulation plat-
form

I. INTRODUCTION

The intelligent robot gets more popular as technology devel-
ops rapidly. All kinds of intelligent robots are used to improve
productivity and reduce costs. Obstacle avoidance and path
planning tasks are the foundation of other complex mission.

Reinforcement learning algorithms have been developed
for nearly half a century and have demonstrated powerful
capabilities in the robotics domain. Reinforcement learning
algorithms can be applied to all aspects of intelligent robotics,
including robot control, motion planning, decision-making,
and perception. Huy X. Pham [3] used Q-learning to perform
simple UAV decision-making and planning while using PID
for UAV control and an optical motion capture device for
locating the actual UAV. Roland Siegwart’s team [8] used
DQN algorithm for end-to-end control of the UAV via MPC
control. Guan-Ting Tu [4] used the Q-learning algorithm
with a physical UAV to perform a real-world simulation
from perception to control on Microsoft’s AirSim simulation
platform. Zhangjie Cao et al. [11] collaborated with Toyota
and utilized a hierarchical reinforcement learning approach to
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complete a vehicle obstacle avoidance task in a Near-Accident
Driving scenario.

The urban road scenario is a typical scenario for UAV and
UGV to perform air-ground collaboration tasks. The vehicle
must shuttle through all kinds of buildings to avoid obstacles
effectively. The UAV must follow the vehicle to give air
support.

Many researchers chose reinforcement learning for decision-
making and planning [6] [7], followed by using a PID con-
troller. In this paper, we first complete the dynamic modeling
of the UGV and UAV. We simplify the complex urban environ-
ment into a grid world. Then we use the Dyna-Q reinforcement
learning algorithm to make decisions for the UGV, calculate
the waypoints, and use the vector field [2] [5] [9] for path
planning. Finally, we use a PID controller for throttle and
steering angle control. A UAV is then added to perform the
air-ground collaboration task using PID controller.

The contribution of this paper is as follows :
• Complete the development and testing of UGV dynamics

with a self-developed simulation platform named Potato
• Propose decision-making and path planning algorithm

using Dyna-Q method and vector field
• Complete the UGV and UAV air-ground collaboration

task in an urban road environment
The paper is organized as follows: Section II introduces the

system model and dynamic models of UAV/UGV. Section III
presents the Dyna-Q algorithm deployed in the self-developed
simulation platform in Section IV. Simulation and results
analysis are presented in Section V, and we make a conclusion
in Section VI.

II. MODELING

A. System Modeling

In this paper, the map is reduced to an M*M ∈ Z2 grid
world with sides of 100 meters. Each cell have two attributes:



a building with a height of 100 meters (obstacle) and flat
land where a vehicle can pass. We calculate the optimal path
by Dyna-Q algorithm to give the specified waypoints.And the
waypoints will only appear in the center of the cell.

We defined the action of the UGV as going four direc-
tions(north, south, west, and east). Each step of the UGV
would be going into the center of the next adjacent cell. The
UGV used in the experiments is Ackermann steering vehicle,
which has more practical significance than Mecanum wheel
vehicle which is commonly used in the laboratory.

B. UAV Modeling

In this paper, we use a quadrotor UAV, and therefore we
need to build the dynamic model of the quadrotor in our
simulation. Quadrotors are widely used in many scenarios,
but building a quadrotor model is difficult. It is tough to build
a perfect dynamic model due to its complex aerodynamic
characteristics. A quadrotor produces gyroscopic effects when
the motors rotate at high speeds, and the airframe is subject
to complex air drag at high speeds. However, the additional
forces and moments mentioned above can be neglected due to
the highly symmetrical nature of the quadrotor and its low-
speed characteristics. Therefore, we can model the dynamics
of quadrotor using the Newton-Euler equations by considering
only the gravitational force of the quadrotor and the lifting
force Ti and torque Mi generated by the rotation of the four
rotors. The kinetic equations are as follows :

F = mV̇ (1)

τ = IΩ̇ + Ω× IΩ (2)

where F is the total external force on the UAV, m is the
mass of the UAV, V = [vx; vy; vz]T is the velocity. τ is
the total external moment on the UAV, I is the inertia tensor
matrix of the UAV, and Ω = [p; q; r]T is the three-axis angular
velocity of UAV in the UAV coordinate system B. Due to
the symmetric layout of the quadrotor fuselage, the UAV’s
inertia tensor matrix can be approximated as a diagonal matrix,
defined as I = diag(Ixx; Iyy; Izz)

Thus here, F and τ are :
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where the Rn
b represents the rotation matrix from the

navigation coordinate system to the body coordinate frame.
The attitude angle is described by the ZYX Euler angle,

denoted as Φ={ϕ, θ, ψ}T, and the three components are called
the roll angle, pitch angle, and yaw angle respectively. The
transformation relationship between the Euler angular velocity

Fig. 1: UAV dynamic model

of the quadrotor and the three-axis angular velocity of UAV
in the UAV coordinate system is :

Φ̇ =

1 sinϕtanθ sinϕtanθ
0 cosϕ sinϕ

0 sinϕ
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cosϕ
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Ω (5)

When the pitch and roll angle are small enough, we can
consider that Φ̇ = Ω, we can get the following formula :
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(6)

Assuming that the quadrotor flies near the hovering state,
the dynamic model of the quadrotor can be simplified to the
following form :

ẍ = (−ϕsψ − θcϕ)g
ÿ = (−θsψ + ψcϕ)g

z̈ = −u1

m + g = −∆u1

m

(7)

The dynamic model of the quadrotor can therefore be
reduced to a second-order system. Since all channels are
decoupled, we can independently control the UAV’s position
in different directions in the simulation.

C. UGV Modeling

The dynamic model of the UGV has a very high degree
of non-linearity, making it challenging to build an ‘adequately
accurate’ dynamic model. Based on the dynamic model built
by ETH for their racing car AMZ [1], we establish one simpler
dynamic model of the UGV. It is based on the following
assumptions: 1) The vehicle travels on flat ground. 2) The



Fig. 2: Dynamic model built by ETH for their racing car AMZ.

body does not produce massive drift. 3) The longitudinal force
of the body acts on the center of mass.

The dynamic model of the UGV are as follows :
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ṙ

 =



vxcosϕ− vysinϕ
vxsinϕ+ vycosϕ

r
FR,x−FF,ysinδ

m

FR,y+FF,ycosδ
m

FF,ylF cosδ−FR,ylR+τTV

Iz


(8)

where X , Y are the position in world coordinate. ϕ denote
the yaw angle, vx and vy represent the velocity decomposition
on body frame, and r is angular acceleration. Fa,b (a ∈ {F ,
R} and b ∈ {x, y}) represents the force on the front/rear tire
on direction x/y. ld (d ∈ {F , R}) is defined as the distance
between the front/rear tire and the center of mass. Iz is the
moment of inertia on z. And τTV is an additional yaw torque
generated by an underlying torque vectoring controller.

To calculate the forces between the tire and the ground, we
need to build the tire model. Here we use the Pacejka tire
model to calculate FR,y and FF,y :

FR,y = DRsin(CRarctan(BRαR)) (9)

FF,y = DF sin(CF arctan(BFαF )) (10)

where B, C and D are empirical parameters, and α are
defined as follows :

αR = arctan(
vy − lRr

vx
) (11)

αF = arctan(
vy + lF r

vx
)− δ (12)

When it comes to the longitudinal forces, we use the drive-
train model, Fx is defined as follow :

Fx = CmD − Cr2v
2
x (13)

where D ∈ [-1,1] represents the driver command of throttle.
To control the car, we apply the steering angle δ and D as the
input.In the ETH’s article, they chose ∆δ and ∆D as inputs.

δ and D can only change continuously in real life, so the
input design is quite close to reality. However, since we do
not consider drift and the UGV in our experiment is always
at a low speed, choosing δ and D as inputs is acceptable.

III. REINFORCEMENT LEARNING AND DYNA-Q

Reinforcement learning originated in the 1950s, flourished
in the 1980s and 1990s, and produced another explosive
breakthrough in the last decade. Reinforcement learning can
be understood as studying a good strategy for intelligent agent.
Agent continuously learns the optimal policy during its inter-
action with the environment until the decision sequence has
the highest payoff. The process of reinforcement learning can
be described as the Markov Decision Process (MDP). A tuple
is defined to describe the learning process, which contains
state space, action space, state transfer probability, reward, and
discount factor. However, it is difficult for an agent to observe
the entire state space completely for real-life scenarios, so the
partially observable Markov decision processes (POMDP) are
proposed as an ideal model for decision-making in uncertain
environments. After the model is determined, the state value
function and action value function are determined using the
Bellman equation.

V π(s) = R(s, π(s)) + γ
∑
s′

P (s′|s, π(s))V π(s′) (14)

where V π means the value using policy π, R(s, π(s)) is the
reward got by taking step π(s) in state s. s′ denote the next
state, and γ is the discount factor.

Based on the selection of the agent actions, we can classify
the reinforcement learning algorithms into two categories:
value-based algorithm and policy-based algorithm. The value-
based approach calculates the value function and selects the
policy corresponding to the maximum value function; the
policy-based approach selects the action and updates the policy
by maximizing the cumulative return.

Q-learning is a classical value-based reinforcement learning
algorithm, and by improving it, we can obtain the Dyna-
Q algorithm, which is a classical model-based reinforcement
learning algorithm. Dyna-Q uses a method called Q-planning
to generate simulated data based on a model and then uses
the simulated data and actual data to improve the policy.
Q-planning picks one state at a time that has been visited,
takes an action that has been performed in that state, gets the
transferred state and the reward by the model, and updates the
action value function with Q-learning based on this simulated
data.

IV. SIMULATION PLATFORM DEVELOPMENT

We designed a novel swarm simulation platform called
Potato for swarm intelligence research. Most of the simulation
platforms are now designed for agents under ten. Adding more
agents becomes a catastrophe for users. So our lab decided to
develop a simulation platform optimized for the swarm with
over 1000 agents.



Algorithm 1: Dyna-Q algorithm
Initialize Q(s, a) and Model(s, a) for all s ∈ S and a ∈
A(s)
repeat
S ← current (nonterminal) state
A ← ϵ-greedy(S, Q)
Take action A; observe resultant reward R, and state S′

Q(S, A) ← Q(S, A) + α[R + γmaxaQ(S′, a) - Q(S,
A)]
Model(s, a) ← R, S′

repeat
S ← random previously observed state
A ← random action previously taken in S
R, S′ ← Model(S, A)
Q(S, A) ← Q(S, A) + α[R + γmaxaQ(S′, a) - Q(S,
A)]

until loop repeat n times
until end of the training

A. Platform Introduction

The Potato platform is a simulation platform developed by
the Intelligent Swarm Laboratory from Beihang University.
Potato is optimized for multi-agents simulation needs and
can support simulation experiments of more than a thousand
agents. The structure of Potato is developed by imitating the
structure of ROS. This simulation platform is mainly divided
into three parts: the display side, the algorithm side, and the
central control side. The display side uses the cesium engine,
which can visualize the algorithm on the world map. The
agent can be operated, and tasks can be set using the mouse
on a computer (windows). The agent can perform the attack,
interception, resupply, monitoring, communication support,
and other tasks. Developers can develop on the algorithm side
and embed new algorithms for simulation and verification. The
central control side contains mainly the dynamic model.

We rigorously defined concepts such as vision and com-
munication support for large-scale simulation scenarios when
designing this platform. We have also defined the agent’s three
basic capabilities, five modes, and three commands. The three
basic capabilities are hold, move, and follow. Furthermore,
we provide an offboard interface, through which developers
can control the agent to validate their algorithms. Based on the
three basic capabilities, we have designed a variety of modes
and commands.And that will eventually lead the platform to
be operated as an RTS game.

So far, our lab developers have completed scenario demon-
strations of UGVs firing missiles against aerial targets and
UGVs marching in formation, initially proving the effective-
ness and reliability of the Potato platform. The developers can
also manually turn on the agents’ view field display on the
display side. The battlefield situation can be easily accessed.

Each agent is given a serial number, and the first digit
represents the type of agent. As can be seen in the figure:
3 is for UGV, and 5 is for missile. The last four digits of the
serial number represent different individuals within the same

Fig. 3: Initial interface of the Potato platform.

Fig. 4: Scenario of UGV launching missile (The red/blue
sphere in the bottom right corner shows the view field of other
agents).

type of agent. At the bottom of the platform interface lies the
timeline. Manual operation to adjust the timeline at the end
of the simulation is available. We can replay the simulation
results, rewind the operation and multiply the speed.

B. Platform Development

We are responsible for the development and testing of the
UGV model. The development of UGV is divided into three
parts: dynamic model, autopilot, and path follower.

We refer to the ETH team’s modeling of their race car AMZ,
and we modify the control quantities to steering angle and
throttle. The drift term in the dynamic model is deleted in our
modeling. So in the final dynamic model, UGV drives on flat
ground and does not drift.

Autopilot is the control layer, where the target speed and
heading angle are entered, and the control quantities can be
obtained.

Path follower is the path planning layer, which can make
UGV possess the three essential capabilities. In order to realize
that, we need to program the UGV to be able to follow a given
path and hold still at a certain point. Owing to the complexity
of the trajectory planning algorithm, the author chose the
path planning algorithm instead. Meanwhile, the path planning
algorithm functions perfectly in all our scenarios. The path
planning technique is to design a virtual vector field around
the path. At each point of the space lies a vector indicating
the desired heading angle and velocity. The vector field will



eventually lead UGV to follow the path. For a given path,
the difference between UGV’s heading angle and the path
direction is defined as follows:

χd(epy) = −χ∞ 2

π
tan−1(kpathepy) (15)

where χd(epy) represents the desired heading angle when
the distance between agent and path equals epy . χ∞ is the
desired heading angle when epy equals infinity. And kpath is
a positive constant that adjusts the changing speed of χd when
epy changes.

Fig. 5: Vector field

When the UGV is on the path, the desired heading angle
is the same as the path direction. Here we set χ∞ equals π

2 .
When the UGV is very far away from the path, the desired
heading angle of the UAV will be almost perpendicular to the
path direction. The UGV should also be capable of stopping
at a specified given location and holding still. Similarly, we
design a vector field that points to where the UGV will
eventually stop. Here we used a segmented approach where
the UGV will stop throttle after being within 15m of the target
point.

V. SIMULATION EXPERIMENT, RESULTS AND ANALYSIS

We manually create a simple grid map using the technique
mentioned in the previous section. The action space can
be simplified to walking up/down/left/right. The reward is
designed to be minus one for each step taken until the endpoint
is reached. The Q-table is obtained by training with the
Dyna-Q reinforcement learning algorithm. After initializing
the location and the endpoint, waypoints are generated by
the Q-table, and the path is obtained. After initializing the
positions of the UAV and UGV, the simulation starts running.
The task of the UGV is to avoid obstacles while reaching

Algorithm 2: Simulation Methodology

1 Initialize map and start/end point
2 Train using Dyan-Q and get waypoints
3 Set waypoints on the platform
4 Create path message pi on the platform
5 Simulation starts:
6 while UGV do not reach the endpoint do
7 UGV follows the present given path ppre
8 UAV follows UGV (without changing the altitude)
9 if Distance UGV-Next waypoint < 5 meters then

10 Estabulish the vector field of the next path
11 UGV follows the next path: ppre ← pi+1

12 end
13 end

Fig. 6: Potato platform with Dyna-Q simulation.

Fig. 7: Potato platform with obstacle avoidance task.

the endpoint. And the task of the UAV is to follow the UGV
throughout the process.

The algorithm 2 shows the methodology.

The desired path is divided into multiple segments or
subpaths; each subpath consists of a line from the previous
waypoint to the following waypoint. When UGV gets within
five meters of the next waypoint, it starts to take a turn(if it
exists) and follow the next subpath. Due to the nature of the
map, the angle of each turn(if it exists) is 90 degrees. Different
speeds are set in different subpaths (20m/s for the first subpath
and 30m/s for the rest) to simulate the actual situation and
test the stability of the UGV’s steering. The performance of a
120m fixed height UAV following UGV under speed-changing
circumstances can be examined.

In the UGV path following, UGV follows the desired
path well. It can be seen from the figure that UGV follows
the next section of the path very quickly after turning. The
perpendicular euclidean distance defines the error between
the path and UGV. The path followed shifts at each turn,
resulting in a sudden change in the error graph. Despite the
slight overshoot, UGV succeeded in following the path at
each turn. This proves the effectiveness of the reinforcement
learning algorithm and path following algorithm used in this
paper. Figure 9 shows the relative distance of the UAV to
UGV in the XY plane. It demonstrates that the UAV moves
quickly to the position of the UGV at the beginning and
keeps a close distance during the following process. Even if
UGV accelerates, the UAV follows very well after a quick
adjustment.



Fig. 8: Error between path and UGV.

Fig. 9: Error between UAV and UGV.

VI. CONCLUSION

The experimental validation of the simulation platform
shows that the Dyna-Q algorithm and the vector field based
path planning method are adequate for the agent in path fol-
lowing and obstacle avoidance tasks. The simulation platform
developed by our lab can complete the verification and simula-
tion of algorithms at different levels. With regard to the simula-
tion, some limitations need to be acknowledged. The dynamic
model can be improved. In many large cities, skyscrapers
will block the UAV’s path. we will add taller buildings in
the simulation to complete the UAV’s following/obstacle-
avoidance task.
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